ROBOTOUR 2015: AUTONOMOUS ROBOT IN PARKS AND URBAN REGIONS

Detecting Drivable Regions in Monocular Images

Michael First

Abstract—Detecting drivable regions in monocular images
seems to be a hard task. By looking at different approaches and
analysing histograms we found a simple way to detect regions a
robot may drive on, assuming there is another collision avoidance
algorithm for non-planar objects.

[. INTRODUCTION

This paper was written with the robotour in mind. Its task
is quite easy to describe but not simple to accomplish.

The task for the robots is to deliver payload in given | hour
time limit to destination as far as 1km. Robots must be fully
autonomous, not leave the road and choose correct path on
junctions. The place of start and destination will be the same
for all robots. [1]

Detecting drivable regions in camera images helps to stay on
the road. It may be used for other challenges than the robotour
as well such as self driving cars outside of cities or on roads
with no lane markers.

II. PROBLEM
A. Detecting Drivable Regions

Given an image, taken by a camera mounted at the front of
the robot, it should calculate which regions in that image are
drivable.

The output of the algorithm does not need to be pixel
perfect. It is required that the information the algorithm
outputs can be used to calculate the driving direction of the
robot.

Avoidance of obstacles like cars, pedestrians, walls or other
large objects is no requirement. It is assumed that there exist
other sensors like Lidar which are better for those tasks.

B. Correctness of Current State

Many algorithms assume that the robot is in a correct state.
This means the robot is on the road with all wheels or legs or
other parts of its body. Furthermore, this means that the robot
also looks at the road and knows a reference region on the
image that is road for sure.

In reality of robotics your robot somehow does get into
invalid states and you need to recover from them. So this is
another requirement of this algorithm to even work when the
robot itself is in an invalid state and does not know where a
reference road is.

C. Images of Roads

The images try to give an overview over the situation. Image
I shows a park in Pisek where you can clearly see drivable
regions. Image 2 shows a road in Pisek where detecting
drivable regions should work too. The last figure 3 is a detailed
example transition between allowed and unallowed regions.

B
Fig. 1: Image of a park in Pisek.

Fig. 2: Tmage of a street in Pisek.

ITI. SOLUTIONS
A. Histogram Backprojection

This solution uses backprojection [2]. Backprojection is
used to find objects in images by calculating the objects
histogram and than backprojecting it on the image resulting
in a black and white image representing probabilities for that
pixel belonging to the object or not.

This method assumes that you have a reference image of
an allowed region. Whereas you usually do not have one
image that does represent all reference images well enough
it is recommended to either apply all reference images on the
given image or to define a reference region inside the image
that should be tested.

ROBOTOUR 2015: AUTONOMOUS ROBOT IN PARKS AND URBAN REGIONS

Fig. 3: Close up of a border between grass and a valid region.

Each method has some problems. The method with testing
all reference images is too slow for fast driving robots. Having
less than 5 FPS on a robot moving with about 1 m/s or even
more is not acceptable. If you decide to use a reference region
you violate the assumption that the robot does get into invalid
states and that it has to recover from them.

When ignoring those 2 constraints backprojection is an ideal
solution (see image 4). However, in competitions you need to
take these 2 problems serious or you will fail, because it only
works in too few conditions.

Fig. 4: Backprojection of a reference region (marked in red
on the left) into the image (left). The resulting probabilities in
grayscale (right).

Implementing the reference region backprojection in python
is easy.

from cv2 import =
import numpy as np

Setup the variables.
width = 320

height = 240
dims = (width, height)
blur = 10

refWwidth = 40
refHeight = 40

b = [5, 5] # buckets for hn and sn
c = [0, 1] # channels
r = [0, 180, 0, 256] 4#ranges

Prepare the image

img = resize(img, dims, 0, 0, INTER_CUBIC)

img = medianBlur (img, blur * 2 + 1)
img = cvtColor (img, COLOR_BGRZHSV)
Set value to 127 for debug image.
[

Reference region mask.

mask = np.zeros(img.shapel[:2], np.uint8)
left = int(width / 2 - refWidth / 2.0)
right = int(width / 2 + refwidth / 2.0)
top = int (height - refHeight)

bottom = int (height)

mask[top:bottom, left:right] = 255

Calculate the histcgram and backproject.
hist = calcHist([imgl, ¢, mask, b, r)
probs = calcBackProject([img], ¢, hist, r, 1.0)

B. Thresholding

Because the first solution presented had some problems in
the real world. A faster and more robust approach is required.
Finding a faster solution means looking at the simple solutions
again, whereas they usually need low computation power and
therefore run at up to 60 FPS. Thresholding seems to be a
good candidate.

o i of ks mag=

Fragroceszad Image

E T T T T7)

Fig. 5: The histogram analysis for a park image.

Vlistog ram o reference regior Vistogram of wroie Tage
stz gi N o <

Precicaassed Invags

Fig. 6: The histogram analysis for a street image.

1) Analyzing Histograms: For good thresholding there is a
good threshold required. Finding a good threshold can be a
really tricky problem and sometimes it is impossible to find a
threshold that solves the problem at all.

Analysis of histograms usually gives more insight.
Analysing a lot of test data having good reference regions
in them we realized that all histograms have something in

ROBOTOUR 2015: AUTONOMOUS ROBOT IN PARKS AND URBAN REGIONS

Histoq s m ot Whole Iage

g ghstoaram ot reterenze g on

Fig. 7: The histogram analysis for a region transition.

common and that detecting drivable regions can be done pretty
simple.

Pavements have a low saturation and tend to be not so
greenish (see image 5, 6 and 7).

For further improvements preprocessing is applied to sup-
press shadows in the image feed to the thresholding algorithm.
The preprocessing blurs the image, sets the value channel
of the HSV image to 127. The latter is only for debugging
visualisation.

2) Applying the threshold: Applying a threshold is simple
in opencv.
from cv2 import =
import numpy as np

Setup the variables.

width = 320

height = 240

dims = (width, height)
blur = 10

Prepare the image.

img = resize(img, dims, 0, 0, INTER_CUBIC)
img = medianBlur (img, blur % 2 + 1)
img = cvtColor{img, COLOR_BGRZHSV)
Set wvalue to 127 for debug image.
#l...1
Apply the threshold.
1 (0, 0, 0)
u = (255, 40, 255)
- = np.array(l, dtype=np.uint8, ndmin=1)
dty p.uint8, ndmin=1)

r = np.array (u,
= inRange (img,

img lower, upper)

Looking at the histograms and doing some testing, we
discovered that with our camera a saturation range of (0,40)
and no restrictions to hue and value are perfect (see 8, 9 and
10).

However with this method you have to watch out and test
it in every new environment where you place your robot. And
changing the camera might mean that you need new threshold.

IV. CONCLUSIONS

The images produced by the algorithms presented produce
quite good images but have some issues. However there are
more problems than the ones already described. Shadows

W

-

Fig. 8: Applying a < 40 saturation threshold on a park image.

Fig. 9: Applying a < 40 saturation threshold on a street image.

Fig. 10: Applying a < 40 saturation threshold on a transition
situation.

and small disturbances in the image can confuse algorithms
working ontop of the image recognition.

To reduce these errors it is recommended to sum each
column in the image. This represents the probability that a
direction that is represented by a column in the image is
drivable. This also means that you have fewer values to take
into account for higher level algorithms making them a little
bit faster.

V. KAMARO-ENGINEERING

This paper was research done in the context of
KaMaRo-Engineering. For more information about the
mission of KaMaRo-Engineering visit our website at:
http://wordpress.kamaro-engineering.de/

REFERENCES

[1] Robotour 2015. http://robotika.cz/competitions/robotour/2015/en. Ac-
cessed: 2015-11-17.

[2] Dana H. Ballard Michael J. Swain. Indexing via color histograms.
Proceedings, Third International Conference on Computer Vision, pages

390 — 393, dec 1990.

